검색 상세

On Toric Wedge Induction and Its Applications to Toric Topology

초록/요약

We introduce variants of toric wedge induction, which systematically analyzes toric spaces through iterative wedge operations. As applications, we resolve the toric lifting problem for (n − 1)-dimensional PL spheres with at most n+4 vertices and achieve a complete classification of toric manifolds with Picard number 4. The results in this thesis are based on a series of joint works by the author.

more

초록/요약

이 논문에서는 wedge operation을 반복적으로 적용하여 toric space를 체 계적으로 분석하는 toric wedge induction의 여러 버전들을 소개한다. 이의 응용으로, 최대 (n+4)개의 꼭지점을 갖는 (n-1)차원 PL sphere들에 대한 toric lifting problem을 해결하고, Picard number가 4인 모든 toric manifold를 완전 히 분류한다. 이 논문의 결과들은 저자의 일련의 공동 연구에 기반한 것이다.

more

목차

1 Introduction 1
2 Preliminaries 4
2.1 Simplicial spheres 4
2.2 Toric spaces 6
3 Wedge operations 14
3.1 Operations on simplicial complexes 14
3.2 Toric colorable seeds with a fixed Picard number 17
3.3 Wedge operations of characteristic maps 22
3.4 Toric wedge induction 24
4 Toric lifting problem 29
4.1 Freely acting subgroups of rank ≤ 3 29
4.2 Freely acting subgroups of rank 4 29
5 Toric manifolds with Picard number 4 37
5.1 Classification by toric wedge induction 37
5.2 Fan-giving characteristic pairs 38
5.3 Complete non-singular fans over the seeds with Picard number 4 45
5.4 Minimal components in the normalized space of rational curves on toric manifolds 48
5.5 Upper bound for the number of minimal non-faces of fanlike spheres 51
5.6 Neighborly and flag fanlike spheres 54
6 On the topological classification of toric manifolds 55
References 58
Appendix A Fan-giving characteristic maps over fanlike seeds with Picard number 4 65
국문초록 88

more