검색 상세

Direct conversion of methane into methane oxygenates over Fe-zeolites using H2O2 generated in situ over Pd catalysts in aqueous solution

초록/요약

수용액에서 H2 및 O2로부터 제자리에서 생성된 H2O2을 사용하여 Fe 제올라이트 촉매 상에서 메탄을 CH3OOH, CH3OH 및 HCOOH와 같은 메탄 산화체로 부분 산화시키는 연구를 진행하였다. 알려진 바와 같이, H2O2 생성 효율을 향상시키기 위해 i) 액체 산 사용, ii) 할라이드 이온 사용 및 iii) 산 기능화 지지체 사용의 세 가지 주제로 실험을 수행하였다. i)의 경우, Fe-zeolite와 Pd/activated carbon(AC) 촉매를 사용하여 황산의 존재 하에서 메탄을 메탄 산화체로 부분 산화시켰다. Fe-ZSM-5, Fe-mordenite, Fe-β, Fe-Y 및 Fe-ferrierite와 같은 다양한 Fe-zeolite를 이온 교환에 의해 제조하고 반응 활성을 비교하였다. 그 중 Fe-ZSM-5 촉매가 상대적으로 적은 금속 침출량으로 메탄의 선택적 산화에서 높은 활성을 보였기 때문에 이를 이용하여 반응 변수를 조절해가며 실험을 수행하였다. 또한, 반응온도, pH, 촉매량의 영향을 조사하였으며, 상세한 조사를 통해 산의 존재 하에서 촉진되는 침출된 Fe종이 주어진 반응조건에서 주로 메탄 산화에 기여하는 것으로 밝혀졌다. ii)의 경우 F-, Cl-, Br-, I- 등의 할라이드 이온을 생성되는H2O2의 농도를 높이기 위한 첨가제로 사용하였다. 이 때, 메탄의 부분 산화 반응을 위해 Fe/ZSM-5 촉매를 습식 함침법으로 제조하였다. 할라이드 이온 없이 반응을 수행한 경우 아무런 생성물도 검출되지 않았다. 하지만 Cl-, Br- 및 I-와 같은 할라이드 이온을 첨가하였을 때, 더 높은 H2O2 농도와 메탄 산화체 수율을 얻을 수 있습니다. 한편, F-을 첨가한 경우 메탄 산화체나 H2O2을 얻을 수 없었다. 흥미롭게도, F- 또는 I-의 농도가 높을 때(>1mM) 실제로 과산화수소의 생성보다는 분해를 촉진하는 것으로 보여졌다. iii)의 경우, H2와 O2로부터 과산화수소의 직접 합성을 위한 몇 가지 Pd 촉매의 담체로 활성탄(AC), 황산으로 처리된 활성탄(s-AC), 다공성 고분자(HCPP), 카르복실기를 갖는 HCPP(c-HCPP) 및 카르복실기와 술폰기를 갖는 HCPP(c-s-HCPP)가 이용되었다. 그 중 c-s-HCPP에 담지된 Pd 촉매는 제자리에서H2O2를 생성하는 데 효과적이면서도 활성 금속의 침출 없이 Fe-ZSM-5에서 메탄 산화 반응을 가능하게 하였다.

more

초록/요약

The partial oxidation of methane into its oxygenates such as CH3OOH, CH3OH, and HCOOH over supported Fe zeolite catalysts using H2O2 generated in situ from H2 and O2 in aqueous solution was investigated. As is well known, in order to improve the efficiency of H2O2 production, three kinds of strategies were applied: i) the use of liquid acids, ii) the use of halide ions, and iii) the use of acid-functionalized support. For the case of i), the partial oxidation of methane into methane oxygenates was conducted over Fe-zeolites and Pd/activated carbon(AC) catalysts in the presence of diluted sulfuric acid. Various Fe-zeolites such as Fe-ZSM-5, Fe-mordenite, Fe-β, Fe-Y, and Fe-ferrierite were prepared by ion-exchange and compared for this reaction. Among them, Fe-ZSM-5 was selected for further study because this catalyst showed high activity in the selective oxidation of methane with relatively less leaching. Further, the effect of reaction temperature, pH, and the amount of catalyst was examined, and detailed investigations revealed that the leached Fe species, which were facilitated in the presence of acid, were mainly responsible for methane oxidation under the given reaction conditions. In case ii), halide ions including F-, Cl-, Br-, and I- were used as additives to enhance the concentration of H2O2. Fe/ZSM-5 catalysts were prepared by the wet impregnation method for the partial oxidation of methane. When the reaction was carried out without halide ions, no product was obtained. However, with the addition of halide ions such as Cl-, Br-, and I-, higher H2O2 concentrations and methane oxygenates yields could be achieved. On the other hand, when F- was added, no product could be obtained. Interestingly, the addition of either F- or high concentrations (>1mM) of I- actually facilitated the decomposition of hydrogen peroxide rather than its production. For the case of iii), several supported Pd catalysts for the direct synthesis of hydrogen peroxide from H2 and O2 were prepared using AC, AC treated with sulfuric acid (s-AC), as-synthesized hyper-crosslinked porous polymer (HCPP), HCPP with a carboxylic group (c-HCPP), and HCPP with carboxylic and sulfonic groups (c-s-HCPP) as supports. Among them, the Pd catalyst supported on c-s-HCPP was effective for generating H2O2 in situ, which enabled methane oxidation over Fe-ZSM-5 without any leaching.

more

목차

Chapter I. Introduction 1
1.1. Background 1
1.2. Partial oxidation of methane to methane oxygenates 5
1.3. Liquid-phase partial oxidation of methane in strong acids 7
1.4. Liquid-phase partial oxidation of methane with H2O2 in water 17
Chapter II. Partial oxidation of methane using H2O2 generated in situ in acidic medium 42
2.1. Experimental 42
2.1.1. Chemicals 42
2.1.2. Catalyst Preparation 42
2.1.3. Characterization 43
2.1.4. Catalytic Activity Test 43
2.2. Results and Discussion 45
2.2.1. Characterization 45
2.2.2. Catalytic Performance 51
2.3. Conclusion 61
Chapter III. Partial oxidation of methane over Fe/ZSM-5 using H2O2 generated in situ over Pd/AC in the presence of halide ions 70
3.1. Experimental 71
3.1.1. Chemicals 71
3.1.2. Catalyst Preparation 71
3.1.3. Characterization 71
3.1.4. Catalytic Activity Test 72
3.2. Results and Discussion 74
3.2.1. Characterization 74
3.2.2. Partial oxidation of methane over Fe/ZSM-5 using preformed H2O2 78
3.2.3. Partial oxidation of methane over Fe/ZSM-5 using H2O2 generated in situ over Pd/AC from H2 and O2. 82
3.3. Conclusion 96
Chapter IV. Partial oxidation of methane using H2O2 generated in situ over acid-functionalized Pd catalyst 97
4.1. Experimental 99
4.1.1. Catalyst Preparation 99
4.1.2. Characterization 102
4.1.3. Catalytic Activity Test 103
4.2. Results and Discussion 105
4.2.1. Characterization of the catalysts 105
4.2.2. Partial oxidation of methane with H2 and O2 111
4.3. Conclusion 126
Summary 127
References 128
국문 초록 134

more