검색 상세

Self-Emulsifying Tablet for the Improved Dissolution of Enzalutamide

초록/요약

The purpose of this study is to improve the solubility of the drug by using a self-emulsifying emulsion drug delivery system as a solubilization system and to develop a solidified formulation by mixing with porous silica to secure various formulations. As a preformulation study, the physicochemical characteristics of enzalutamide were evaluated, and a solubilization system, SME composition, was selected through a ternary phase study. As a result, the physicochemical properties of the candidate materials were investigated, and SME with a composition of 30% Capryol 90 (oil), 35% KolliporEL (surfactant), and 35% Transcutol HP (co-surfactant) was set up. The particle size was measured using a particle size analyzer(DLS) by dispersing the designed SME in water, and the result of about 46.5 nm was confirmed. In the formulation study, as a Liquid-SMEDDS formulation study, the ratio of drugs to SMEs was designed at 1:20, 1:10, 1:6.7, and 1:5, and particle size and dissolution evaluation were conducted. As a result, when the drug and SME were 1:20 and 1:10, the dissolution rate in the pH 1.2 dissolution test was improved by 27.6 times and 22.3 times, respectively, compared to the enzalutamide powder. Based on the Liquid-SMEDDS formulation, a Solid-SMEDDS study was conducted using porous silica to obtain formulation diversity and the effect of inhibiting precipitation. The ratio of SME to silica was designed to be 1:1.5, 1:1, and 1.5:1, and was prepared by surface adsorption. After selecting a formulation consisting of 1.5:1 of SME composition containing enzalutamide and Neusilin in powder form, the dissolution rate was improved by about 14.3 times under pH 1.2 buffer solution conditions. Then, SME Tablet was prepared by mixing the solidified SME with the excipient, which achieved a higher dissolution rate than the solidified SME powder. In conclusion, a solid formulation with improved solubility was obtained using a Neusilin SME formulation containing enzalutamide, a poorly soluble drug.

more

초록/요약

새로 발견된 제약 성분들 중에는, 물에 용해되지않는 난용성 약물이 약 90%를 차지하고 있다. 따라서 약물의 용해도를 개선하기위해 다양한 가용화 시스템 연구가 진행되었다. 약물의 특성에 따라 가용화 시스템을 적용하여 생체이용률을 높힐 수 있다. 본 연구의 목적은 가용화 시스템으로 자가유화에멀젼 약물전달시스템을 이용하여 약물의 용해성을 개선시키고, 다양한 제형을 확보하기위해 다공성 실리카와 혼합하여 고형화된 제제를 개발하는 것이다. 기초 제형연구로, Enzalutamide 의 물리화학적 특성평가를 수행하였고, ternary phase 연구를 통해 가용화 시스템인 sme 조성물을 선정하였다. 그 결과로, 후보물질의 물리화학적 성질을 규명하였고, 오일로 Capryol 90 30%, 계면활성제로 KolliphorEL 35% , 공계면활성제로 Transcutol HP 35%의 조성물을 가지는 SME 를 설정하였다. 설계된 SME 를 물에 분산시켜입자크기측정기로 입자크기를 측정하였으며 약 46.5 nm 의 입자를형성함을 확인하였다. 제형 연구에서는, 액상의 SMEDDS 제형 연구로 약물과 SME 의비율을 1:20, 1:10, 1:6.7, 1:5 로 설계하고, 입자크기와 용출평가를 진행하였다. 그 결과 약물과 SME 가 1: 20, 1:10 일 때 , pH1.2 용출액에서의 용출률이 기존약물대비 각 27.6 배, 22.3 배 개선된 결과를 얻었다. Liquid- SMEDDS 제형을 토대로, 제형적 다양성을 확보하고 침전 발생을 억제하는 효과를 얻기위해 다공성 실리카를 이용하여 고형화된SMEDDS 선정 연구를 진행하였다. SME 와 실리카의 비율을 1:1.5, 1:1, 1.5:1 로 설계하였고, 표면흡착법으로 제조하였다. 엔잘루타마이드를 포함하는 SME 조성물과 분말형태인 Neusilin 이 1.5: 1 로 구성된 제형을 선정한 뒤, pH 1.2 용출액조건에서 약 14.3 배 개선된 용출률을 확보하였다. 그 후 고형화된 SME 와 부형제와의 혼합법을 통해 SME 정제를 제조하였으며, 이는 고형화된 SME 분말보다 높은 용출률을 달성하였다. 결론적으로 난용성 약물인 엔잘루타마이드를 포함하는 Neusilin 기반의 고형화된 SMEDDS 제제를 통해 용해도가 개선된 고형 제제를 얻을 수 있었다.

more

목차

1. Introduction 1
2. Materials and Methods 7
2.1 Materials 7
2.2 Solubility Test 8
2.3 Pseudo-Ternary Phase Diagram 8
2.4 Preparation of Liquid-SMEDDS 8
2.5 Preparation of Solidified-SMEDDS 9
2.6 Preparation of Self-emulsifying tablet 10
2.7 Characterization of ENZ and Formulation 16
2.7.1 Morphology 16
2.7.2 Differential Scanning Calorimetry (DSC) 16
2.7.3 Particle Size Distribution (PSD) 17
2.7.4 Dynamic Light Scattering (DLS) 17
2.7.5 Flowability 17
2.8 In vitro dissolution studies 18
2.9 Ultra-violet (UV) Analysis 18
3. Result and Discussion 19
3.1 Screening of SMEDDS Components 19
3.2 Pseudo-Ternary Phase Diagram 21
3.3 Characterization of Formulation 23
3.3.1 Morphology 23
3.3.2 Differential Scanning Calorimetry (DSC) 23
3.3.3 Particle Size Distribution (PSD) 23
3.3.4 Dynamic Light Scattering (DLS) 27
3.3.5 Flowability 30
3.3.6 UV-vis spectrum 30
3.4 In vitro dissolution studies of L-SMEDDS 33
3.5 In vitro dissolution studies of S-SMEDDS 36
3.6 Evaluation of for formulation of SME tablet 38
3.7 In vitro dissolution studies of SME tablet 38
3.8 Redispersion particle size in dissolution media 41
4. Conclusions 44
5. Reference 46

more