검색 상세

육방정계 질화 붕소 (h-BN) 원자 결함으로부터 방출된 단일 광자의 Stark shift 연구

The Stark Shifts of Single Photon Emitters in Hexagonal Boron Nitride (h-BN) Atomic Defects

초록/요약

Solid-state defects, such as diamond NV-centers, SiC divacancies have been studied as single photon emitters, which are fundamental resources of quantum information technology. Together with these solid-state emitters, 2D materials such as transition metal dichalcogenides and hexagonal boron nitride (h-BN) have also attracted much recent attention as new candidate materials possessing single photon emitters. Among these, atomic defects in h-BN are expected to be particularly promising for 2D-based future quantum information applications owing to emerging single photon emitters operating at room temperature. However, to use h-BN for quantum applications, their emission energy needs to be controlled. Here, we show the Stark shift induced energy control of single photon emitters in h-BN by fabricating h-BN/graphene van der Waals heterostructures. Upon the application of a vertical electric field, we observed various types of Stark shifts including linear, quadratic and V-shaped from h-BN emitters. In particular, the frequently observed linear Stark shifts suggest the existence of the out-of-plane dipole in the defect’s crystal structure, which is supported by theoretical calculations. Also, we observed the discrete change of the emission intensities induced by an applied electric field. Altogether, our observation on the electrical tuning of h-BN single photon emitters shows the potential of 2D-based photonic quantum information applications.

more

목차

Chapter 1. Introduction
Introduction 1

Chapter 2. Background knowledge
2.1 Two-dimensional (2D) materials 3
2.1.1 Transition metal dichalcogenides (TMDCs) 5
2.1.2 Graphene 5
2.1.3. Hexagonal boron nitride (h-BN) 6
2.2 Single photon emitters in 2D materials 7
2.3 Single photon emitters in h-BN atomic defects 10
2.4 Spectral tuning of single photon emitters in h-BN 13
2.5 Basic theory of Stark shift in a defect dipole moment 15

Chapter 3. Device fabrication and measurement set-up
3.1 Device fabrication 17
3.2 Optical measurement set-up 22
3.3 Electrical measurement 24


Chapter 4. Single photon emitters in h-BN
4.1 Characterization of single photon emitters in h-BN 25
4.2 Polarization dependence 29

Chapter 5. Electrical tuning of single photon emitters in h-BN atomic defects
5.1 The linear Stark shift in h-BN single photon emitters 32
5.2 Various Stark shifts in h-BN single photon emitters 37
5.3 Theoretical simulation of linear Stark shifts 41
5.4 The gate-induced discrete intensity change in defect emission 44

Chapter 6. Future work and conclusion
6.1 Future work 47
6.2 Conclusion 49

Bibliography 50

more