검색 상세

Pharmacokinetics of tofacitinib in various disease rat models and physiologically based pharmacokinetic simulation

다양한 질병을 가지는 쥐 모델에서 tofacitinib의 약동학 및 PBPK 시뮬레이션

초록/요약

Tofacitinib, a Janus kinase 1 and 3 inhibitor, is used to treat rheumatoid arthritis. It is mainly metabolized by the cytochromes p450 (CYP) 3A1/2 and CYP2C11 in the liver. Systemic diseases that affect the function of the kidney intestine or liver could change the pharmacokinetics of tofacitinib owing to a significant first-pass effect of tofacitinib in the liver and intestines. Therefore, pharmacokinetics and CYP protein expression changes were evaluated in rats with renal failure, ulcerative colitis and liver cirrhosis after intravenous (10 mg/kg) and oral (20 mg/kg) administration of tofacitinib, and clinical pharmacokinetics parameters were predicted in patients using physiologically based pharmacokinetic (PBPK) simulation. Part I, we evaluated on pharmacokinetics of tofacitinib in rats with gentamicin and cisplatin-induced acute renal failure. Part Ⅱ, we performed on pharmacokinetics in rats with dextran sulfate sodium-induced ulcerative colitis. Part Ⅲ, we determined the effects of isosakuranetin (ISN) on the pharmacokinetics in rats with N-dimethylnitrosamine-induced liver cirrhosis (LC). Part Ⅳ, PBPK simulation was performed to predict the pharmacokinetics of tofacitinib in patients with renal failure, ulcerative colitis or liver cirrhosis using PK-Sim and Simcyp. Our results showed that the area under plasma concentration-time curves of tofacitinib increased in each disease models due to decreased time-averaged total body clearance (CL), and ISN restored lower CL in LC rats compared to that in control rats. The predicted human pharmacokinetic parameters of tofacitinib from PBPK simulation were considerably similar to the clinical data. These findings could provide useful information for deciding its clinical usage and adjustment of tofacitinib according to patients with specific diseases.

more

초록/요약

Tofacitinib은 Janus kinase 1과 3의 억제제로 류마티스 관절염 치료에 쓰인다. Tofacitinib은 간에서 CYP3A1/2과 CYP2C11에 의해서 주로 대사된다. 신장, 장 또는 간 기능에 영향을 미치는 전신 질환은 간 과 장에서 tofacitinib의 초회 통과 효과로 인해 tofacitinib의 약동학적 변화를 일으킬 수 있다. 따라서 본 연구에서는 신부전, 궤양성 대장염, 간경화가 있는 쥐를 대상으로 tofacitinib을 정맥(10mg/kg) 및 경구(20mg/kg) 투여 후 약동학 및 CYP 단백질 발현 변화를 확인하고 PBPK 시뮬레이션을 사용하여 환자의 약동학 파라미터를 예측했다. Part I에서는 gentamicin과 cisplatin을 사용하여 급성 신부전을 유도한 쥐에서 tofacitinib의 약동학적 변화를 고찰했다. Part Ⅱ에서는 dextran sulfate sodium로 유도한 궤양성 대장염이 있는 쥐에서 약동학적 변화를 확인했다. Part Ⅲ에서는 N-dimethylnitrosamine을 사용하여 간경화를 유도한(LC) 쥐에서 약동학적 변화를 고찰하고 isosakuranetin(ISN)의 효과를 살펴보았다. Part Ⅳ에서는 신부전, 궤양성 대장염 또는 간경변증 환자에서 tofacitinib의 약동학적 변화를 예측하기 위해 PK-Sim과 Simcyp을 사용하여 PBPK 시뮬레이션을 수행하였다. 우리 실험 결과는 각 질병 모델에서 clearance(CL)의 감소로 인해 tofacitinib의 area under plasma concentration-time curves가 증가했으며, ISN은 LC 쥐에서 낮은 CL을 회복시켰음을 보여주었다. PBPK 시뮬레이션에서 예측된 사람의 tofacitinib 약동학 파라미터는 임상 데이터와 상당히 유사했다. 이러한 결과는 특정 질병을 가진 환자에 따라 tofacitinib의 임상적 사용 및 용량을 조절하는 데 유용한 정보를 제공할 수 있을 것이다.

more

목차

Part I Slower elimination of tofacitinib in acute renal failure rat models: contribution of hepatic metabolism and renal excretion 1
I. Abstract 1
II. Introduction 2
III. Materials and methods 5
A. Chemicals 5
B. Animals 5
C. Induction of acute renal failure 6
D. Preliminary study 6
E. Intravenous and oral administration of tofacitinib 7
F. Measurement of Vmax, Km, and CLint 8
G. Immunoblot analysis 9
H. HPLC analysis 9
I. Pharmacokinetic analysis 10
J. Statistical analysis 11
IV. Results 12
A. Induction of acute renal failure 12
B. Pharmacokinetics of tofacitinib after intravenous administration 16
C. Pharmacokinetics of tofacitinib after oral administration 20
D. Effect of acute renal failure on CYP enzyme expression 23
E. Measurement of Vmax, Km, and CLint of tofacitinib in hepatic microsomes 25
V. Discussion 27
Ⅵ. Conclusion 32
Ⅶ. Reference 33
Part Ⅱ Effects of dextran sulfate sodium-induced ulcerative colitis on the disposition of tofacitinib in rats 40
I. Abstract 40
II. Introduction 41
III. Materials and methods 43
A. Chemicals 43
B. Animals 43
C. Induction of ulcerative colitis 44
D. Preliminary study 44
E. Rat plasma protein binding of tofacitinib 45
F. Intravenous and oral administration of tofacitinib 45
G. Tissue distribution of tofacitinib 46
H. Measurement of Vmax, Km, and CLint 47
I. Immunoblot analysis 47
J. HPLC analysis 48
K. Pharmacokinetic analysis 49
L. Statistical analysis 49
IV. Results 50
A. Induction of ulcerative colitis 50
B. Plasma protein binding of tofacitinib 51
C. Intravenous administration study 54
D. Oral administration study 55
E. Tissue distribution of tofacitinib 58
F. In vitro metabolism of tofacitinib 60
G. Effect of ulcerative colitis on the expression of CYP and other related proteins 62
V. Discussion 64
Ⅵ. Conclusion 68
Ⅶ. Reference 69
Part Ⅲ Effects of isosakuranetin on pharmacokinetic changes of tofacitinib in rats with N-dimethylnitrosamine-induced liver cirrhosis 75
I. Abstract 75
II. Introduction 77
III. Materials and methods 80
A. Chemicals 80
B. Animals 80
C. Induction of liver cirrhosis 81
D. Preliminary study 82
E. Rat plasma protein binding of tofacitinib 82
F. Intravenous and oral administration of tofacitinib 83
G. Tissue distribution of tofacitinib 84
H. Measurement of Vmax, Km and CLint 85
I. Immunoblot analysis 85
J. HPLC analysis 86
K. Pharmacokinetic analysis 87
L. Statistical analysis 87
IV. Results 88
A. Preliminary study 88
B. Intravenous administration of tofacitinib in rats 91
C. Oral administration of tofacitinib in rats 92
D. Tissue distribution of tofacitinib 96
E. In vitro metabolism of tofacitinib 98
F. Expression of CYP isoforms and other involved proteins in the hepatic and intestinal icrosomes 100
V. Discussion 102
Ⅵ. Conclusion 107
Ⅶ. Reference 108
Part Ⅳ PBPK simulation of tofacitinib in renal failure, ulcerative colitis and liver cirrhosis 114
I. Abstract 114
II. Introduction 116
III. Materials and methods 118
A. Physicochemical properties of tofacitinib 118
B. Development of the tofacitinib PBPK model 120
IV. Results 124
A. Renal failure model 124
B. Ulcerative colitis model 127
C. Liver cirrhosis model 130
V. Discussion 133
Ⅵ. Conclusion 136
Ⅶ. Reference 137
KOREAN ABSTRACT 141

more